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Abstract — This paper extends a method to solve the 
unbounded electrostatic fields. The method is based on the 
evaluation of the potential on some fictitious boundaries 
enclosing each part of the conductors and dielectrics, 
according to the charge lying on their surface, or the dipole 
lying in the dielectrics volume. The major advantage of this 
method lies in its high efficiency of computing the electrostatic 
field in which sources and materials spread out at a relatively 
long distance. 

I. INTRODUCTION 
In the context of the finite element method (FEM) a 

variety of techniques have been proposed to compute the 
unbounded electrostatic fields. Truncation is the simplest 
among them. However, an onerous discretization of a wide 
domain is generally required if accurate results are desired. 
Hybrid methods combine FEM with other methods to solve 
the unbounded problem. The unbounded problem is divided 
into two regions by a fictitious boundary. The inner region 
is solved by FEM, and the outer region is solved by other 
methods. Finite element method-boundary element method 
(FEM-BEM) [1]-[2] is one of the hybrid methods, which is 
popular in the electrostatic field. The boundary integral 
equations in BEM describe the outer region as equivalent 
charge and dipole, lying on the boundary, and calculate the 
Dirichlet conditions by integral of them. Because the source 
points and field points are all on the same boundary, when 
the distance is close to zero, the calculation error could be  
great. FEM- Dirichlet boundary condition iteration (DBCI) 
[3]-[4] is extended to integral on another boundary, which 
is surrounded by the fictitious boundary wholly. In this 
paper we advanced a new hybrid method, FEM-source 
integral boundary conditions [5]. In the method, the 
materials in electrostatic field are replaced by equivalent 
charge or dipole. We calculate the Dirichlet conditions by 
integral of all of the real sources and equivalent sources.  

II. THE FEM-SOURCE INTEGRAL BOUNDARY CONDITIONS 
The unbounded electrostatic fields are determined by 

charge and materials in the vacuum. After the materials are 
replaced by equivalent sources, the electrostatic field can be 
determined by real charge and equivalent sources in the 
vacuum. 

The FEM-source integral boundary conditions method 
is illustrated by the simple 3-D system shown in Fig. 1. It’s 
an electrostatic system. Fictitious boundaries enclosed 
several parts separately. In the bounded domain iD , the 
Laplace’s equation is  

2 0ε ϕ− ∇ =                                       (1) 

where ε  is the electric permittivity and ϕ  is the scalar 
electrical potential in the bounded domain. In FEM, (1) can 
be discretized as 

=Kφ 0 .                                        (2) 
where K  is a sparse matrix. 
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Fig. 1. An electrostatic system of voltaged conductors and non-

homogeneous dielectric objects is enclosed by fictitious boundaries. 
 

To calculate (2) we need boundary conditions on 1Γ . 
The boundary conditions are expressed by

1
ϕ Γ . To 

calculate the
1

ϕ Γ , the materials should be equaled to 

equivalent sources. Voltaged conductors could be replaced 
by free charge, lying on its surface. Dielectrics could be 
replaced either by bound charge, lying on its surface, or 
by dipole, lying in its volume. The

1
ϕ Γ will be determined 

by integral of all of the sources. The sources include real 
charges, equivalent charges of the conductors, and 
equivalent sources of the dielectrics. The integral 
equations will be discussed in next section. 

There are two ways to calculate (2) with
1

ϕ Γ .  

One is the couple of FEM and integral equations. It can 
be described as 
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where 1 2+ =
1Γ

K φ K φ 0  is a part of (2) without the 

equations on boundary nodes; 1 2+
1Γ

C φ C φ 0=  is the 

boundary integral equation. 
The other is iteration. At first, we let 

( ) ( )1 0=
1

0Γφ φ                                     (4) 

where ( )0
0φ  is arbitrary constant column. It’s the initial 

value of
1Γ

φ . Step 2 solves the bounded domains by FEM. 

Step 3 calculates equivalent sources of the materials. Step 4 
calculates new Dirichlet conditions by boundary integral 
equation. Step 5 returns to the step 2 with new boundary 
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conditions. The problem is iterated until convergence. The 
procedure can be described as 

( )

1 0
0

0
0 0

1
4

1
4 4

C
C

ext
D

D e

dS
n R

dS dV
n R R

ϕϕ ε
πε

ρϕε ε
πε πε

Γ
∂⎛ ⎞ ′= −∫∫ ⎜ ⎟∂⎝ ⎠

∂ ′
xt

′+ − +∫∫ ∫∫∫
∂

  (10) ( )

( ) ( )1

i

ii −

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦1

1 2

0Γ

0φK K
0 1 φφ

       (5) ( )1, 2,...,i n=

or 
where i indicates the FEM calculation time and ( )

1

iϕ Γ  is  

determined by equivalent sources, according . ( )1iϕ −
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The iteration is more efficiency than coupling when the 
interested problem is complex.  

IV. VALIDATION EXAMPLES III. BOUNDARY INTEGRAL EQUATIONS 

In electrostatic fields conductor can be replaced by 
equivalent charge, lying on its surface. The conductor’s 
contribution  to Dirichlet conditions is 

A. Voltaged Conductor Sphere Enclosed by Dielectric 
Shell 

The first example concerns the computation of the 
potential ϕ  near a conductor sphere. It is voltaged at 0V . 
There’s a dielectric shell enclosing the conductor, and they 
are concentric. They are all embedded in vacuum. We 
solved the problem by 3-D model, and then compared the 
result with analytical solution. 
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where  is the surface of conductor,  is the distance 

from a source point on ′  to the field point o 1

CS ′
CR

CS nΓ , andϕ  
is the potential in vacuum or dielectric next to the surface 
of conducto

B. Volume Charge and Dielectric Block 
The second example concerns the computation of the 

potential ϕ  in a dielectric block. The dielectric’s 
permittivity is ε . There are two volume charges. One is 
above the dielectric block with volume charge density 1ρ  
and the other is under the dielectric block with volume 
charge density 2ρ , as shown in Fig. 2. 

 

r. 
In electrostatic fields the dielectric could be considered 

as bound charge with surface charge density Pσ . For 
homogeneous, linearity and isotropy dielectric, 

( )0P n
ϕσ ε ε ∂

= −
∂

                               (7) 

whereϕ  is the potential in the dielectric next to its surface 
and  is a unit vector normal to the dielectric surface. 
Therefore, the dielectric’s contribution to Dirichlet 
conditions is 
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where DS ′  is the surface of dielectric,  is the distance 

from a source point on  to the field point on
DR

DS ′
1Γ , andϕ  

is the potential in dielectric next to its surface. 
Fig. 2. A dielectric block with the presence of volume charges. 
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